MACHINE LEARNING FROM OPTIMIZATION PERSPECTIME

Zheng Han June 15th, 2017

CONTENT

- Machine Learning (ML)
- Case Study
- Optimization in ML
- Learning Theory
- - Regularization
- - Learning Algorithm

ML – A FAVORABLE PERSPECTIVE

ML - ANALOGY

Magic?

No, more like gardening

- Seeds = Algorithms
- Nutrients = Data
- Gardener = You
- Plants = Programs

ML - THREE COMPONENTS

Machine Learning = Representation + Evaluation + Optimization

CASE STUDY - DECISION TREE

Suppose the features are **Outlook** (x_1) , **Temperature** (x_2) , **Humidity** (x_3) , and **Wind** (x_4) . Then the feature vector $\mathbf{x} = (Sunny, Hot, High, Strong)$ will be classified as **No**. The **Temperature** feature is irrelevant.

CASE STUDY - DECISION TREE

Suppose the features are **Outlook** (x_1) , **Temperature** (x_2) , **Humidity** (x_3) , and **Wind** (x_4) . Then the feature vector $\mathbf{x} = (Sunny, Hot, High, Strong)$ will be classified as **No**. The **Temperature** feature is irrelevant.

- Representation: x = (Sunny Hot, High, Strong),
 tree structure to represent boolean function
- Evaluation: false positive rate, false negative rate, etc..
- Optimization: efficiently construct a tree that gives relatively low predictive error

CASE STUDY - NEURAL NETWORK

Backpropagation

Optimization:
Stochastic Gradient Descent(SGD)s:
Momentum / Nesterov accelerated gradient
Adagrad / Adagelta / RMSprop / Adam

Representation: images -> pixels -> matrices

ML - AUTOMATE AUTOMATION

Table 1: The three components of learning algorithms.

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search
Hyperplanes	Likelihood	Branch-and-bound
Naive Bayes	Posterior probability	Continuous optimization
Logistic regression	Information gain	Unconstrained
Decision trees	K-L divergence	Gradient descent
Sets of rules	Cost/Utility	Conjugate gradient
Propositional rules	Margin	Quasi-Newton methods
Logic programs		Constrained
Neural networks		Linear programming
Graphical models		Quadratic programming
Bayesian networks		
Conditional random fields		

OPTIMIZATION

$$\min_{x \in \mathbb{R}^n} f(x)$$
s.t. $e(x) = 0$

$$c(x) \le 0$$

OPTIMIZATION IN ML

Representation

$$x \in \mathcal{X}, y \in \mathcal{Y}$$

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

$$h: \mathcal{X} \mapsto \mathcal{Y}$$

Evaluation

$$\ell(h(x),y)$$

Optimization

$$\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i), y_i)$$

Parameterized Optimization

$$\min_{\omega \in \mathcal{W}} \ \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i; \omega), y_i)$$

OPTIMIZATION IN ML

Expected Risk
$$R(h) := \int_{(\mathcal{X},\mathcal{Y})} \ell(h(x),y) dP(x,y) = E[\ell(h(x),y)]$$

Empirical Risk
$$R_n(h) := rac{1}{n} \sum_{i=1}^n \ell(h(x_i), y_i)$$

Learning Theory

$$\sup_{h \in \mathcal{H}} |R(h) - R_n(h)| \le \mathcal{O}(\sqrt{\frac{1}{2n}} \log(\frac{2}{n}) + \frac{d_{\mathcal{H}}}{n} \log(\frac{n}{d_{\mathcal{H}}}))$$

 $d_{\mathcal{H}}: VC \text{ dimension, measures the capacity of } \mathcal{H}$

OPTIMIZATION IN ML

Expected Risk

$$R(h) := \int_{(\mathcal{X}, \mathcal{Y})} \ell(h(x), y) dP(x, y) = E[\ell(h(x), y)]$$

Empirical Risk

$$R_n(h) := \frac{1}{n} \sum_{i=1}^n \ell(h(x_i), y_i)$$

Model Complexity

$$\mathcal{H}_C := \{ h \in \mathcal{H} : \ \Omega(h) \le C \}$$

Structural Risk Minimization

$$\min_{h \in \mathcal{H}_C} R_n(h)$$

STRUCTURAL RISK MINIMIZATION BY REGULARIZATION

OPTIMIZATION ALGORITHM IN ML

Gradient Descent Method:

$$\theta^{k+1} = \theta^k - \alpha_k \nabla J(\theta^k)$$

Second-order Method:

$$\theta^{k+1} = \theta^k - \alpha_k G_k \nabla J(\theta^k)$$

OPTIMIZATION ALG FOR DEEP LEARNING

OTHER RELEVANT TOPICS

- Reinforcement Learning: dynamic programming
- Online Learning: online convex optimization
- Evolutionary Algorithms: generic algorithms
- Big Data: distributed optimization, sparse optimization

ML IN REAL-WORLD

REFERENCES

- A Few Useful Things to Know about Machine Learning. Pedro Domingos
- The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. Pedro Domingos
- Scikit-Learn: http://scikit-learn.org
- An Extended Version Of The Scikit-Learn Cheat Sheet. Christophe Bourguignat
- · Deep Learning. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton
- Optimization Methods for Large-Scale Machine Learning. Leon Bottou, Frank E. Zurtis
 and Jorge Nocedal
- The LION Way: Machine Learning plus Intelligent Optimization. Roberto Battiti, Mauro Brunato

